

Exclusive Partner

TemBreak PRO ZS Model Circuit Breaker with Integrated Residual Current Protection (CBR)

Thermal Magnetic and Residual Current Trip Unit from 125A up to 250A USER MANUAL

Version 1.0.1

nhp.com.au nhpnz.co.nz

Safety Precautions

Authorised Personnel Only

The product or system described in this documentation must be installed, operated and maintained by qualified personnel only. NHP or Terasaki accept no responsibility for the consequences of the use of this equipment by unqualified personnel.

A qualified person is one with the necessary skills and knowledge of the construction and operation of the installation of electrical equipment and has been trained to identify and avoid risks.

Appropriate use of NHP / Terasaki products

NHP / Terasaki products are intended to be used only for the applications described in the catalogue and technical documentation, which is dedicated to them. If products and components from other manufacturers are used, they must be recommended or approved by NHP or Terasaki. Appropriate use of NHP / Terasaki products during transport, storage, installation, assembly, commissioning, operation and maintenance is necessary to ensure safe operation and without any problems.

The permissible ambient conditions must be met. The information contained in the technical documentation must be observed.

Publication of responsibility

The contents of this document have been reviewed to ensure that the reliability of the information is correct at time of publication. NHP or Terasaki are not responsible for printing or damage resulting from errors. NHP or Terasaki reserve the right to make corrections and changes needed in subsequent edition.

Warnings and notes

This documentation contains safety instructions that you must follow for your personal safety and to prevent damage to property. Safety instructions, referring to your personal safety are reported in the literature by a safety alert symbol.

Safety warning symbols and the words below are classified according to the degree of risk.

WARNING: Indicates an imminently hazardous situation which, if it cannot be avoided, will result in death or serious injury.

WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, can result serious injury or death.

WARNING: Indicates a potentially hazardous situation which, if it cannot be avoided, may cause minor or moderate injury.

Notice: Indicates a warning of property damage and can also indicate important operating and especially useful information on the product, that it should pay particular attention to efficient and safe operation.

NHP

Summary of Changes

This section highlights the details of changes made since the previous issue of this document.

The versioning convention used to track changes in this document follows the structure Vx.y.z where:

x: Major revision, where extensive changes are made which is generally incompatible with the previous version. Such changes may include new products and/or features, or removal of information which is no longer relevant or applicable to the previous version.

y: Minor revision, where changes made do not change the overall scope of the previous version but may include additional information which complements or corrects the previous version or provides additional clarity on an existing topic.

z: Patch version, where small changes are made to correct minor errors or adjust existing text, charts, figures and/or images, and which do not add or remove information from the previous version. Example changes may include spelling corrections, image re-sizing and adjustments, updated images, etc.

Version	Publication date	Changes	Ву
V 1.0.0	17-12-2024	Initial release	B. PARK
V 1.0.1	18-12-2024	Correction to internal accessory part numbers and website URLs	B. PARK

Table of Contents

Using this manual	2
Safety Precautions	2
Summary of Changes	3
Table of Contents	4
Introduction	5
Who Should Use This Manual?	5
Additional resources	5
Terminology and Abbreviations	6
Product Information	7
Part Number Break Down	8
Available MCCBs in the TemBreak PRO range	9
Available CBRs in the TemBreak PRO range	10
Label Identification	11
ZS_TF Information	12
Neutral Switching Options for 4-pole ZS_TF CBRs	13
Internal Accessories	14
Auxiliary & Alarm Switches	14
Auxiliary Contacts	14
Alarm Contacts	14
Heavy Duty Style Auxiliary and Alarm Switches	14
Auxiliary and Alarm Data	15
Number of internal accessories	15
Shunt Trip or Under Voltage Trip	16
ZS_TF CBR Only Accessories	17
Trip Control Unit (TCU)	17
Tamper Proof Seal	17
Installation	18
Precautions	18
Mounting Angles	18
Direction of Power Supply	18
Clearances	19
Internal Accessory Mounting Locations	21
ZS125 internal accessories combination	21
ZS250 internal accessories combination	22
Alarm Switch Installation	23
Standard Alarm & Auxiliary installation	23
Protection Settings	24
Trip Curve	24 25
Thermal protection	25 25
TF – Adjusting Ir (Current)	25 25
Labelling of Calibrated Points Magnetic Protection	25
TF – Fixed I _i (Current)	20
Residual Current Protection	20
Residual Current Protection Type	27
Zero Phase Current Transformer (ZCT)	27
$R - Adjusting I\Delta_n$ (Residual Operating Current)	28
$R - Adjusting \Delta t$ (Time Delay)	28
Temperature Ratings	29
. en.peratoro i totrigo	20

Integrated Residual Current Unit	30
Residual Current Unit Indication and Function Button Locations	30
Residual Current Unit Power Indication	30
Residual Current Trip Indication	31
Residual Current Unit Test Button	31
Remote Trip Operation	32
Commissioning	34
Thermal Setting (I _r)	34
Residual Operating Current ($I\Delta_n$) and Time Delay (Δt) Setting	35
Dielectric Test Disconnect Plug	36
Dielectric Testing Methodology	37
Troubleshooting	38
Annex A – Dimensions	40
ZS125 Dimensions	40
ZS250 Dimensions	41
Annex B – Trip Curves	42
ZS125M	42
ZS125M Residual Current Characteristic	43
ZS250M 160A	44
ZS250M 250A	45
ZS250M Residual Current Characteristic	46
Annex C – I ² t Let Through Curves	47
ZS125M	47
ZS250M	48
Annex D – Peak Let Through Curves	49
ZS125M	49
ZS250M	50
Annex E – Watts Loss	51
Resistance Watts Loss	51
Annex F – Temperature Derating	52
Front & Rear Connect	52
Annex G – Connection Diagrams	53
Annex H – Wiring Diagrams & Terminal Designations	56
Internal Accessories	56
Annex I – Internal Harmonics Protection	57

Introduction

This user manual describes the TemBreak *PRO* Thermal Magnetic MCCB (**ZS_TF**) features and instructions for use and provides information for commissioning and configuring. ZS_TF model MCCBs were previously described as Earth Leakage Circuit Breakers, or ELCBs, however ZS_TF model MCCBs are defined as per AS/NZS 60947.2 Annex B as a circuit breaker with integrated residual current protection, denoted as CBR in this document hereinafter.

Some additional features may require the use of additional products and accessories to achieve full utilization of that feature. Refer the respective User Manual in the TemBreak *PRO* series for additional information on the respective product.

Notice: Not all MCCBs in the TemBreak *PRO* series are identical. This document specifically covers the ZS_TF series CBR only. Refer to the respective TemBreak *PRO* User Manual (e.g. B_SE, P_SE, etc.) for information and instructions on other models in the TemBreak *PRO* range.

Who Should Use This Manual?

This manual aims to provide users, electricians, panel builders and maintenance personnel, with the technical information required for commissioning and operation of the NHP / Terasaki TemBreak PRO ZS_TF CBR.

Users of this document must have at minimum a basic understanding of electrical circuit protection topics including (but not limited to):

- Power distribution and reticulation
- Circuit protection devices
- Fault currents
- Arc faults
- Temperature rise and thermal derating of switchgear.
- Earth leakage and earth faults

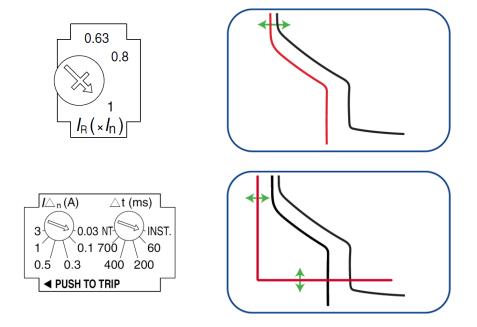
Additional resources

The following resources contain additional information which should be read in conjunction with this document.

Resource	Description
NHP/Terasaki TemBreak PRO ZS_TF Installation Instructions TBP-ZS125-ZS250-Installation-Manual	Information on installing, mounting, and wiring the TemBreak <i>PRO</i> Thermal Magnetic Residual Current CBR.
NHP/Terasaki Trip Control Unit (TCU) Installation Instructions TBA	Information on installing, mounting, and wiring the TemBreak <i>PRO</i> ZS_TF Trip Control Unit (TCU).
Technical Catalogue <u>NHP-Moulded-Case-Circuit-Breaker-Technical-Catalogue</u>	TemBreak PRO Catalogue, containing part numbers, product data, dimensions, and more to assist with product selection.
Technical Data – Temperature and Watts Loss <u>TemBreak-PRO-Moulded-Case-Circuit-Breaker-Temperature-</u> <u>and-Watts-Loss-Technical-Catalogue</u>	Temperature and Watts Loss tables for TemBreak <i>PRO</i> Moulded Case Circuit Breakers.
Technical Data – Cascading and Selectivity <u>TemBreak-PRO-Moulded-Case-Circuit-Breaker-Cascading-</u> <u>and-Selectivity-Technical-Catalogue</u>	Cascading and Selectivity tables for TemBreak <i>PRO</i> Moulded Case Circuit Breakers with Din-T, Din-Safe, & MOD6 MCBs/RCBOs
Technical Data – Coordination <u>TemBreak-PRO-Moulded-Case-Circuit-Breaker-and-Socomec-</u> <u>Component-Ordering-Technical-Catalogue</u>	Socomec Backup Tables with TemBreak PRO Moulded Case Circuit Breakers
Technical Data – Type 2 Coordination <u>Type-2-Coordination-for-TemBreak-Pro-Technical-Catalogue</u>	Type 2 Coordination for Premium Efficiency Motor Starters with TemBreak PRO Moulded Case Circuit Breakers
NHP/Terasaki External Mount Handle Installation Instructions TemBreak-PRO-HP-External-Handle-For-B160-B250-ZS125- ZS250-Installation-Manual	Information on installing and mounting the HP external mount handles.
NHP/Terasaki HB Direct Mount Handle Installation Instructions TemBreak-PRO-HB-External-Handle-For-B160-B250-ZS125- ZS250-Installation-Manual	Information on installing and mounting the HB direct mount handles.
NHP Terasaki Rear Connection Tags Installation Instructions <u>TemBreak-PRO-Rear-Tags-ZS125-ZS250-A250-P250-B160-</u> <u>B250-Installation-Manual</u>	Information on installing and terminating to rear connection tags.

Introduction

Terminology and Abbreviations


Abbreviation	Description	Abbreviation	Description
			Maintenance Interface Port: Plug for temporary
ACP	Auxiliary Communications port: Plug for Smart auxiliary / alarm contact block	MIP	connection to OCR testing, servicing, and maintenance
			tools
AL	Alarm: An auxiliary contact indicating trip status	Ν	Neutral
ASCII	American Standard Code for Information Interchange	NP	Neutral Protection
		040	Optional Alarm Contact: Connection connector optional
AX or AUX	Auxiliary: Auxiliary contact indicating open / closed	OAC	alarm output contact
BE	Basic Electronic Trip Unit (dial type, LSI and LSIG)	OCR	Over Current Relay
000	Circuit breaker with residual current protection, previously		
CBR	known as Earth Leakage Circuit Breakers, or ELCBs	P or PTA	Pre-trip Alarm
CCW	Connected Components Workbench software	РСВ	Printed Circuit Board
	¹ Communication Interface Port: Plug for control power		
	and data for use with the TPED remote display and		
CIP ¹²	TPCM communication module	PDU	Protocol Data Unit
		-	
	² Common Industrial Protocol		
	Cyclic Redundancy Check - error-detecting code used at	5511/	
CRC	the end of each Modbus message	PELV	Protected Extra Low Voltage (earthed system)
			Pre-Trip Alarm: is a programmable output contact to
dec	Decimal (base-10) numbering system	ΡΤΑ	advise when a trip may be imminent.
	Signed Double Integer datatype (4 bytes or 32 bits in		
DINT	length)	RT	Remote Trip
EIPM	TemBreak PRO Ethernet/IP Module	RTU	Remote Terminal Unit
E/L	Earth Leakage	S or STD	Short Time Delay Protection
ELCB	Earth Leakage Circuit Breaker	SE	Smart Energy Trip Unit
FF	Fixed Thermal and Fixed Magnetic	SELV	Separated Extra Low Voltage
FM	Fixed Thermal and Adjustable Magnetic	SN	Solid Neutral
			Service Set Identifier (name of the Wi-Fi wireless
G or GF	Ground Fault Protection	SSID	network)
hex	Hexadecimal (base-16) numbering system	STR	String datatype
l or INST	Instantaneous Protection	TCP	Transmission Control Protocol
IEC	International Electrotechnical Commission	TCU	Trip Control Unit
IEEE	Institute of Electrical and Electronics Engineers	TF	Adjustable Thermal and Fixed Magnetic
-	Ground Fault Protection Current	THD	Total Harmonic Distortion
lg li	Instantaneous Protection Current	TM	Adjustable Thermal Magnetic
-	Rated Current	ТРСМ	TemCom PRO Communication Module
In I∆n	Residual Operating Current	TPED	TemView <i>PRO</i> External Display
	Neutral Protection Current	Δt	Residual Current Non-Actuating Time delay
	Signed Integer datatype (2 bytes or 16 bits in length)	tr	LTD Time delay
IP	International Protection (Ingress Protection)	t _{sd}	STD Time delay
<u>lr</u>	LTD Protection Current	t _{tsp}	Thermal Self-Protection Time delay
sd	STD Protection Current	UDINT	Unsigned Integer (2 bytes or 16-bits in length)
tsp	Thermal Self-Protection Current	UINT	Unsigned Integer (2 bytes or 16 bits in length)
L or LTD	Long Time Delay Protection	ULINT	Unsigned Long Integer datatype (8 bytes or 64 bits in
-		-	length)
LCD	Liquid Crystal Display (LCD)	URLs	Uniform Resource Locator (address of an Internet
	1 3 1 3 ()		website)
LED	Light Emitting Diode	WORD	2 bytes or 16-bits of data
LINT	Signed Long Integer datatype (8 bytes or 64 bits in	ZCT	Zero Phase Current Transformer
	length)		Zana Calastiva Interlacting (-and calastivity)
LSI	Long Time, Short Time and Instantaneous Protection	ZSI	Zone Selective Interlocking (zone selectivity)
LSIG	Long Time, Short Time, Instantaneous and Ground Fault Protection	θ	Thermal imaging value
MCCB	Moulded Case Circuit Breaker	θο	Cold start mode thermal imaging value
MHT	Magnetic Hold Trigger	Өн	Hot start mode thermal imaging value
microSD	Micro Secure Digital	θtrip	Thermal imaging value tripping threshold

NHP

Product Information

The TemBreak *PRO* ZS model circuit breakers with integrated residual current protection (CBRs) with trip unit type TF offer protection against overloads and short circuits, with additional functionality for the detection and tripping of earth leakage and earth fault currents. The TF type trip unit features adjustable protection settings via preset rotary switches. It provides adjustable thermal and fixed magnetic tripping curves, as well as adjustable residual current protection.

Features (TF - adjustable - fixed)

- Adjustable thermal trip curves
- Non-adjustable (fixed) magnetic trip protection
- Adjustable residual current protection
- 3-pole and 4-pole versions available
- 4-pole versions available with either Switched Neutral pole or Unswitched Neutral (solid) pole
- Switched Neutral (4P only) with early make/late break design which reduces the risk of abnormal line to neutral voltages that may damage sensitive electronic equipment
- Remote Trip function

Frame Sizes

- ZS125
- ZS250

Protection Functions

- Thermal Long Time Delay
- Magnetic Instantaneous
- Residual Current Residual operating current and non-actuating time delay

Product Information

Part Number Break Down

a)	Model T	уре
	А	Basic applications
		(160250 A)
	Р	Mid to advanced applications
		(160630 A)
	В	High current, high kA applications
		(1601600 A)
	ZS	Earth Leakage applications
		(125250 A)
	XS	Highest current applications
		(20003200 A)

b) Ampere Frame

125	А	
160	А	
250	А	
400	А	
630	А	
800	А	
1000	А	
1250	А	
1600	А	
2000	А	
2500	А	
3200	А	

c) Short	Circuit Bre	ak Capacity Icu (kA)
R	200 kA	
L	150 kA	
Р	125 kA	
S	110 kA	
G	100 kA	
HL	85 kA	
Н	70 kA	
М	65 kA	
N	50 kA	
F	36 kA	
E	25 kA	
D	Switch	

d) Pole Pit	tch Size (mm) 1)			
1	25			
2	30			
3	35			
e) No. of Poles				

1 2 3

4

f) Trip Unit Rating (In) In xA

7)

8)

g) Trip Unit Type

- Adj Thermal Fix Magnetic 4) TF
 - FF Fix Thermal Fix Magnetic
 - ТΜ Adj Thermal Adj Magnetic
 - Smart Ammeter 5) 6) SX
 - ΒE Basic Electronic 6)
 - Smart Energy 6) SE
 - NN Non-Auto Switch

h) Trip Unit Option

- G Ground Fault 2)
- Ν Neutral 2)
- Ρ Pre-Trip Alarm 3)
- SN Solid Neutral 9)

Notice: Not all combinations are possible. Confirm part number combination with NHP for availability.

160AF only

- 1. 2. 3. For P_SE versions these features are standard and therefore are not added to the end of the part number. PTA is standard with P electronic models and therefore P is not added to the end of the part number.
- 4. Only available in A & ZS models Only available in B models
- 5.
- Not available in A and ZS models
- 6. 7. 8. Only available in A and B models (FF Only Trip Unit) Not available in A and B models (FF Only Trip Unit)
- 9. ZS Models

NHP

Product Information

Available MCCBs in the TemBreak PRO range

	Rating		Frame Size													
Short Circu	it Break Capacity (kA)	160	250	400	630	800	1000	1250	1600	2000	2500	3200				
E	25	A160E – TF A160E – FF B160E – FF	A250E – TM	P400E-TM	P630E – TM											
F	36	A160F – TF P160F – FF P160F – TM P160F – BE P160F – BEG P160F – SE	A250F – TM P250F – TM P250F – BE P250F – BEG P250F – BEG P250F – SE	P400F – TM P400F – BE P400F – BEG P400F – SE	P630F – TM P630F – BE P630F – BEG P630F – SE	B800F – TM										
N	50	P160N – TM P160N – BE P160N – BEG P160N – SE	P250N – TM P250N – BE P250N – BEG P250N – SE	P400N – TM P400N – BE P400N – BEG P400N – SE	P630N – TM P630N – BE P630N – BEG P630N – SE	B800N – TM B800N – BE B800N – SX B800N – SE	B1000N – BE B1000N – BEG B1000N – SX B1000N – SE	B1250N – BE B1250N – BEG	B1600N – BE B1600N – BEG							
н	70	P160H – TM P160H – BE P160H – BEG P160H – SE	P250H – TM P250H – BE P250H – BEG P250H – SE	P400H – TM P400H – BE P400H – BEG P400H – SE	P630H – TM P630H – BE P630H – BEG P630H – SE	B800H – TM B800H – BE B800H – BEG B800H – SX B800H – SE	B1000H – BE B1000H – BEG B1000H – SX B1000H – SE	B1250H – BE B1250H – BEG								
HL	85							B1250HL – BE B1250HL – BEG	B1600HL – BE B1600HL – BEG	XS2000HL – BE XS2000HL – BEG	XS2500HL – BE XS2500HL – BEG	XS3200HL – BE				
G	100					B800G – TM B800G – BE B800G – BEG B800G – SX B800G – SE										
S	110			P400S – TM P400S – BE P400S – BEG P400S – SE	P630S – TM P630S – BE P630S – BEG P630S – SE											
Р	125	B160P – TM	B250P – TM B250P – BE B250P – SE	B400P – BE B400P – BEG		B800P – BE B800P – BEG B800P – SX B800P – SE										
R	200	B160R – TM	B250R – TM	B400P – BE B400P – BEG		B800R – BE B800R – BEG B800R – SX B800R – SE										
D	Switch	A160D – NN P160D – NN	A250D – NN P250D – NN	P400D – NN	P630D – NN	B800D – NN	B1000D – NN	B1250D – NN	B1600D – NN	XS2000D – NN	XS2500D – NN					

Product Information

Available CBRs in the TemBreak PRO range

	Rating		Frame Size											
	Circuit Break apacity (kA)	125	160	250	400	630	800	1000	1250	1600	2000	2500	3200	
М	65	ZS125M – TF		ZS250M – TF										

Product Information

Label Identification

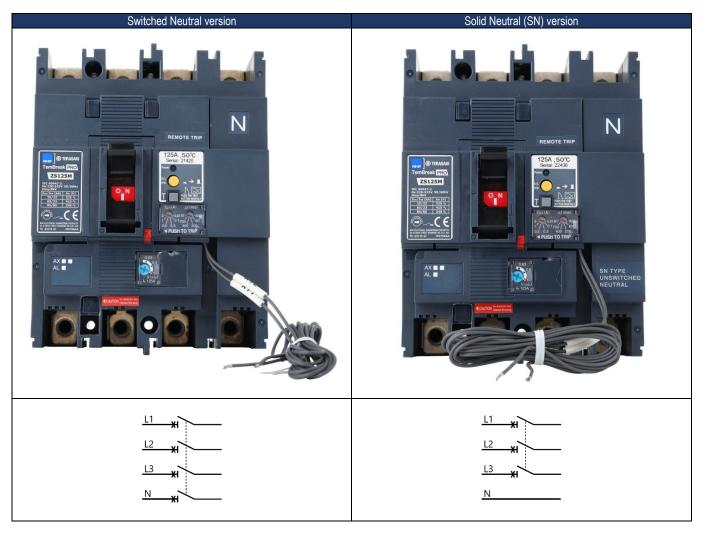
The label on the MCCB features information to aid in product identification.

	Description	Notes							
1	Circuit Break Identifier	Identifies the model type, ampere frame, and I _{cu} rating.							
2	Trip unit type	The trip unit type is indicated by the colour of the label.							
L		Implementation of the coord of the face. White label – Thermal-magnetic type trip unit Trip Units FF, TF, FM, TM Models A, P, B, ZS Ampere Frame 125 – 800 Grey label – electronic or non-auto type trip unit. To distinguish between the two, electronic trip units will have the "lou" letter and non-auto will use the letter "D," Switch. Trip Units BE, BEG, BEGN, NN Models A, P, B, XS Ampere Frame 160 – 3200							
		Blue Label – SMART electronic type trip unit Trip Units SX, SE Models P, B Ampere Frame 160 – 1000							
3	Certifications	Identifies the additional localised certifications of the product, in addition to the international product standard, IEC 60947-2 / AS/NZS IEC 60947-2. For additional certifications please contact NHP.							

NHP

ZS_TF Information

Frame / Model	Attribute Unit Condition			ZS125_TF	ZS250_TF	
Number of Poles	Aunbule	Onit		25125_1F 3, 4	25250_1F 3, 4	
Nominal current ratings	<i>I</i> _{CT}	(A)	50°C	20, 32,	160	
Trip unit ratings	101	(74)	Calibration	50, 63,	250	
				100, 125		
Desidual comment commence actions	1	(A)		0.03, 0.1, 0.3,	0.03, 0.1, 0.3,	
Residual current ampere settings	l∆n	(A)		0.5, 1, 3	0.5, 1, 3	
Electrical characteristics						
Rated maximum operational voltage	Ue	(V)	AC 50/60 Hz	525	525	
		(V)	DC	-	_	
Rated insulation voltage	Ui	(V)		525	525	
Rated impulse withstand voltage	Uimp	(kV)		8	8	
Selectivity category				A	Α	
Rated short time withstand current	l _{cw}	(kA)	0.4 sec	_	_	
Residual current unit minimum voltage	ICW	(V)	AC 50/60 Hz	200	200	
Ultimate breaking capacity	1	, í	525 Vac	250	200	
Onlinate breaking capacity	l _{cu}	(kA)	440 Vac	-		
				50	50	
(IEC, JIS, AS/NZS)			415 Vac	65	65	
		-	400 Vac	65	65	
			240 Vac	85	85	
DC Voltage			250 Vdc	_	-	
Service breaking capacity	Ics	(kA)	525 Vac	22	25	
		. , ,	440 Vac	25	25	
(IEC, JIS, AS/NZS)			415 Vac	33	36	
			400 Vac	36	36	
		-				
2014		-	240 Vac	85	85	
DC Voltage			250 Vdc	-	-	
Residual short-circuit making and breaking capacity	I∆m	(kA)		25% of I_{cu}	25% of I_{cu}	
Protection - Over Current Release types		ndard		~ .		
Adjustable thermal, fixed magnetic	Opt Opt — Not Ava			Std	Std	
Residual current protection, Type A		Module R	Required	Std	Std	
Installation (Std / Opt / —)	mitteq	incodic in	loquilou	Old	Old	
Front connection (FC)				Std	Std	
Extension bar (FB)	- Std Star	ndard		Opt	Opt	
Cable tunnel clamp (FW)		ional		Opt	Opt	
Rear Connection (RC)	Not Ava			Opt	Opt	
DIN rail adaptor				Opt	—	
Withdrawable mechanism				—	—	
Plug-in				Yes	 Yes	
Reverse supply connection possible to 440V		,	,		i	
Dimensions w T	Н	(mm		155	165	
	W	(mm	n) 1 pole	—	—	
H -			2 pole	—	—	
			3 pole	90	105	
			4 pole	120	140	
	D	(mm		68	68	
			·			
	Т	(mm	,	92	92	
Weight	W	(kg) 1 pole	—	–	
			2 pole	—	—	
			3 pole	1.1	1.5	
	1		4 pole	1.4	1.9	
				1.4	1.3	
	Std Star	ndard		014	614	
Operation options (Std / Opt / -) Toggle operation	- Opt Opti	ional		Std	Std	
Toggle operation Extension handle TP-HS/HP or Direct mount T2HB		ional	·	Opt	Opt	
Toggle operation	- Opt Opti	ional	es 415 Vac			


Neutral Switching Options for 4-pole ZS_TF CBRs

The 4-pole ZS_TF CBRs are available with Switched Neutral as standard, however Solid (Unswitched) Neutral versions can be selected depending on the electrical requirements of the application.

Selecting Switched or Solid Neutral versions of 4-pole ZS_TF CBRs is achieved by modifying the part number when ordering:

- Switched Neutral versions are standard, and no further action is required when ordering (e.g. ZS125M4125TF).
- Solid Neutral versions have the suffix "SN" appended to the part number (e.g. ZS125M4125TFSN).

When a 4-pole ZS_TF CBR has a Solid (Unswitched) Neutral, the CBR will have a sticker affixed to the lower portion of the Neutral pole which states "SN TYPE, UNSWITCHED NEUTRAL", as indicated below.

Notice: The Neutral switching type of an existing ZS_TF CBR cannot be modified. Switched or Solid Neutral options are only able to be selected when ordering the CBR.

Internal Accessories

Internal accessories include Auxiliary and Alarm contacts, which may be installed under the front cover of the MCCB in various combinations to provide additional functionality and connection with external control circuits.

For information regarding installation of the internal accessories, see Internal Accessory Mounting Locations

Auxiliary & Alarm Switches

Auxiliary Contacts

An auxiliary contact can be installed to indicate whether an MCCB is Open (both OFF and Tripped positions) or Closed (ON). Auxiliary contacts come in either general purpose, heavy duty, or micro-switch type, with some combinations pre-wired or with terminals. General purpose auxiliary switches are provided as a single change-over switching arrangement (1x C/O).

Part Number	Description	Contact Type	Connection		Cond	ductor		
	Description	Contact Type	Туре	Minimum	Maximum	Size	Length	
T2AX00M3SWA	Auxiliary	General purpose	Pre-wired	N	N/A		700mm	
T2AX00M3STA	Auxiliary	General purpose	Terminal	0.5mm ² 1.25mm ² N/A		/A		
T2AX00M3RTA	Auxiliary	Micro-switch	Terminal	0.5mm ²	1.25mm ²	N	/A	

Alarm Contacts

An alarm contact can be installed to indicate whether an MCCB is in the Tripped or Not Tripped position (ON, OFF). Alarm contacts come in either general purpose, heavy duty, or micro-switch type, with some combinations pre-wired or with terminals. General purpose alarm switches are provided as a single change-over switching arrangement (1x C/O).

Part Number	Description	Contact Turna	Connection	Conductor				
	Description	Contact Type	Туре	Minimum	Maximum	Size	Length	
T2AL00M3SWA	Alarm; left side only	General purpose	Pre-wired	N/A		0.5mm ²	700mm	
T2AL00M3STA	Alarm; left side only	General purpose	Terminal	0.5mm ² 1.25mm ² N/A		/A		
T2AL00M3RTA	Alarm; left side only	Micro-switch	Terminal	0.5mm ²	1.25mm ²	N	/A	

Heavy Duty Style Auxiliary and Alarm Switches

Part Number	Description	Contact Type	Connection		Cond	luctor		Switching
Part Number Description	Contact Type	Туре	Minimum	Maximum	Size	Length	Arrangement	
T2AX00B1STA	Auxiliary	Heavy Duty	Terminal	1.25mm ²	2.5mm ²	N	/A	1 N/O
T2AX00B2STA	Auxiliary	Heavy Duty	Terminal	1.25mm ²	2.5mm ²	N	/A	1 N/C
T2AL00B1STA	Alarm	Heavy Duty	Terminal	1.25mm ²	2.5mm ²	N	/A	1 N/O
T2AL00B2STA	Alarm	Heavy Duty	Terminal	1.25mm ²	2.5mm ²	N	/A	1 N/C

For information regarding wiring and terminal designations, see Annex H

Internal Accessories

Auxiliary and Alarm Data

	General purpose contact								
	AC (V)								
Volts (V)	Ampei	res (A)	Valta (V)	Ampe	res (A)	Minimum Load			
VOIIS (V)	Resistive Load	Inductive Load	Volts (V)	Resistive Load	Inductive Load				
480	-	-	250	-	-				
250	3	2	125	0.4	0.05	100 mA @ 15 Vdc			
125	3	2	30	3	2	_			

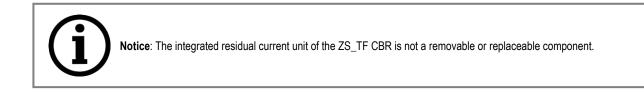
	Heavy duty contact							
	AC (V)			DC (V)				
Volts (V)	Ampei	res (A)	Volte (V)	Amper	res (A)	Minimum Load		
voits (v)	Resistive Load	Inductive Load	Volts (V)	Resistive Load	Inductive Load			
500	1	1	_	-	-			
440	3	3	250	0.5	0.5			
240	4	4	125	1	1	—		
110	5	5	48	3	2.5]		
48	6	6	24	6	2.5			

	Micro-switch contact							
Valte (V)	Ampe	Minimum Load						
Volts (V)	Resistive Load	Inductive Load						
30	0.1	-	1 mA @ 5 Vdc					

Number of internal accessories

The ZS_TF CBRs can accept the following number of Auxiliary and Alarm contact accessories. The Auxiliary contacts used for each ZS_TF CBR must be selected as General Purpose or Heavy Duty type, individual ZS_TF CBRs cannot accept a combination of General Purpose and Heavy Duty type Auxiliary contacts. Alarm contact accessories can be General Purpose or Heavy Duty type, regardless of the type and number of Auxiliary contacts installed.

Frame Size	Auxiliary General Purpose		Auxiliary Heavy Duty		Alarm Contact (General Purpose or Heavy Duty)
ZS125	2	0.5	1	And	1
ZS250	2	Or	2	And	1


Internal Accessories

Shunt Trip or Under Voltage Trip

The ZS_TF CBRs can accept auxiliary and alarm contact accessories as fitted in the left-hand side accessory chamber, however the ZS_TF CBRs cannot accept Shunt Trip nor Under Voltage Trip accessories as the right-hand side area of the CBR is occupied by the integrated residual current unit.

While Shunt Trip and Under Voltage Trip accessories cannot be installed in ZS_TF CBRs, the ZS_TF CBRs come standard with a Remote Trip (RT) function if remote tripping functionality is required. See the <u>Remote Trip Operation</u> section for additional information.

ZS_TF CBR Only Accessories

Notice: The following list of accessories are unique to the ZS_TF model CBRs. For other accessories in the TemBreak PRO series, refer to the TemBreak PRO technical catalogues, respective user manuals, and installation instructions.

Trip Control Unit (TCU)

The Trip Control Unit (TCU) is an optional accessory that mounts on the right-hand side of a ZS_TF CBR, part number T2M1166CBA.

Features:

- Cause Of Trip contact to indicate if the CBR has tripped due to residual current protection, which also acts as a Pre-Trip Alarm.
- Pre-Trip Alarm contact which can be configured to activate at 50% or 70% of the residual operating current setting.
- Alarm LED to indicate if an earth leakage or earth fault has been detected by the CBR.
- Remote Trip facility.
- Down-Voltage Trip function.
- Can be retrofitted to ZS_TF CBRs on-site by qualified personnel.

For more information on the features, installation and usage instructions, please refer to the Trip Control Unit User Manual.

Notice: When the add-on TCU is used, the standard integrated Remote Trip (RT) feature of the ZS_TF CBR should not be used as it can cause incorrect operation of the TCU.

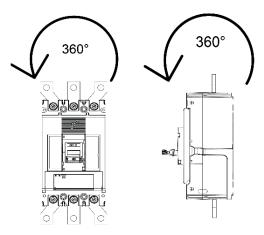
Tamper Proof Seal

The ZS_TF CBR can be fitted with optional tamper-proof seal to help prevent unauthorized adjustment of the residual operating current and time delay settings, part number T2SF25NTA.

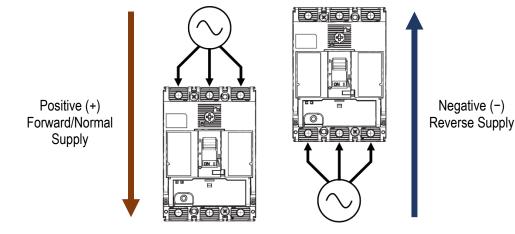
Exclusive Partner

Installation

Precautions


WARNING: To prevent electrical shock and damage to equipment, disconnect and isolate power source upstream of the MCCB before installing or servicing the MCCB including its connected accessories.

Notice: To ensure correct performance, and integrity of equipment, the installation instructions and recommendations provided herein shall be respected. Refer to the respective user manual and installation instructions provided with the MCCB and associated accessories.

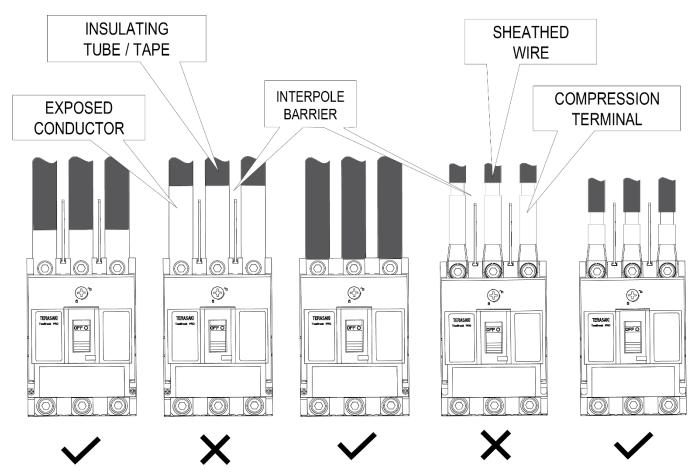

Mounting Angles

TemBreak PRO MCCBs may be mounted at any angle without affecting performance.

Direction of Power Supply

Power supply may be fed in either direction with respect to the MCCB without affecting electrical performance.

Clearances



WARNING: Exposed conductors including terminals at attached busbars must be insulated to avoid possible short-circuit or earth faults due any foreign matter coming into contact with the conductors.

Phase to Phase and Earth

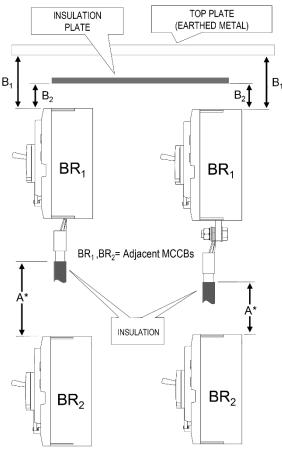
Interruption of large currents during fault or normal switching operation produces ionised gases and arcing materials which expelled from the vents at the top of the MCCB for both ZS125 and ZS250. These ionised gases are highly conductive, concentrated, and at an elevated temperature when it exits the MCCB via the arc vents. Care must be taken to avoid an arcing fault from occurring due to the presence of concentrated ionised gases creating a conductive path between exposed conductors. Incoming conductors must therefore be insulated the full length up to the terminal opening of the MCCB, ensuring bare conductors are not exposed directly to concentrated ionised gases. This also applies to the attached busbars supplied as part of the MCCB.

Interpole barriers or terminal covers may be used to achieve creepage and clearance requirements. Conductors must not impede the flow of ionised gas and allow it to clear and disperse safety. Interpole barriers are supplied as standard with Terasaki MCCBs for the line side only. 2 barriers with 3P MCCBs and 3 with 4P MCCBs. In cases where two different MCCB types are installed one above the other, the insulation distance between the two models should be as for the lower model.

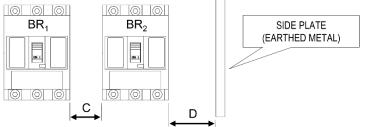
Insulating Distance

When earth metal is installed within proximity of the breakers, the correct insulating distance must be maintained, refer to Minimum Clearance for further details.

This distance is necessary to allow the exhausted arc gases to disperse. This could include the mounting plate or side panel within a switchboard.


Minimum Clearance

Below illustrates the minimum clearance that must be maintained. Ensure that the exposed conductor is insulated until it overlaps the moulded case breaker at the terminal, or the terminal cover.

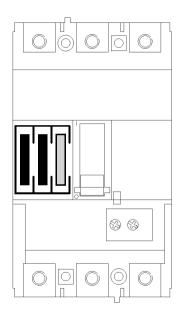

Dim.	Description
A	Distance from lower breaker to open charging part of terminal on upper breaker (front connection) or the distance from lower breaker to upper breaker end (rear connection and plug-in type)
B1	Distance from breaker end to ceiling (earthed metal)
B ₂	Distance from breaker end to insulator
С	Clearance between breakers
D	Distance from breaker side to side plate (earthed metal)

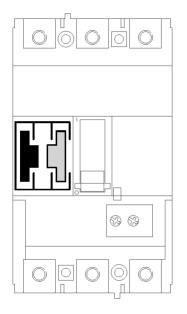
	Distances (mm)				
MCCB Cat. No.	А	B ₁	B ₂	С	D
ZS125	75	45	25	0	25
ZS250	100	80	30	0	25

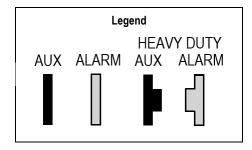
NHE

BR₁,BR₂= Adjacent Isolators / MCCBs

*distance from conductor insulation to downstream MCCB

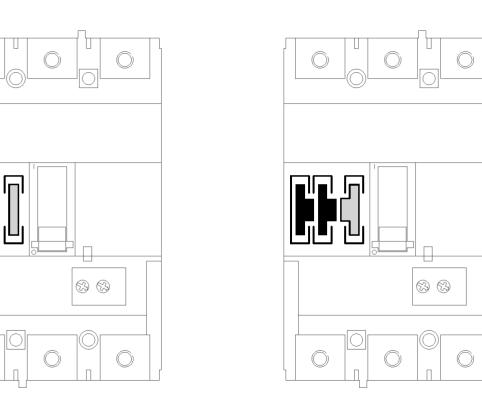

Internal Accessory Mounting Locations


ZS125 and ZS250 frame sizes have different internal mounting locations for auxiliary contacts and alarm contacts.


Auxiliary contacts and alarm contacts may be mounted in the left-hand side internal accessory chamber only as the right-hand side is occupied by the integrated residual current unit.

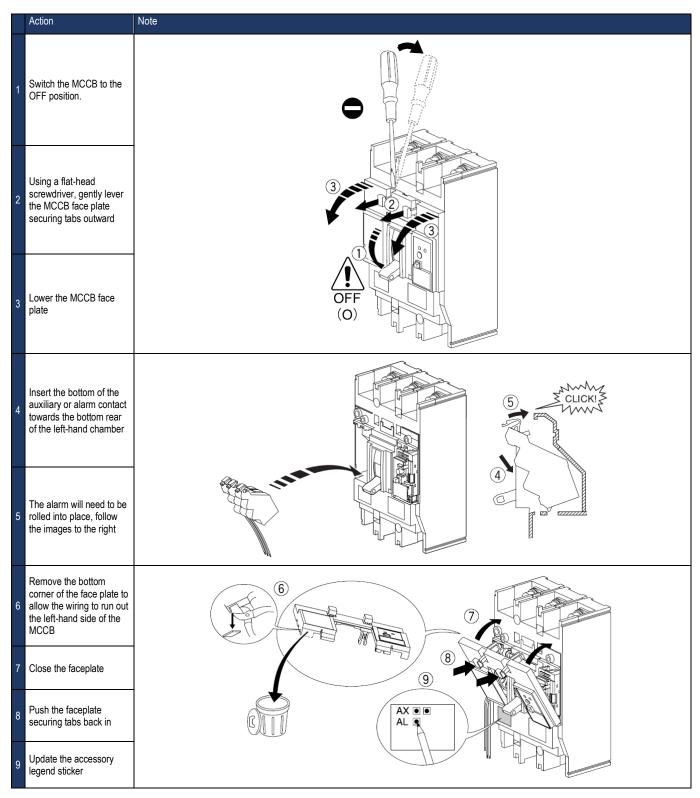
Refer to the following illustrations for each frame size listing the various possible internal accessories combinations.

ZS125 internal accessories combination



ZS250 internal accessories combination

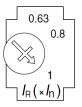
))

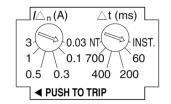


Alarm Switch Installation

The alarm switch has a trip bar that needs to interact with the MCCBs trip mechanism. As such they must be installed in a specific way. Refer to the supplied Installation Instructions for the respective accessories for further detail.

Standard Alarm & Auxiliary installation

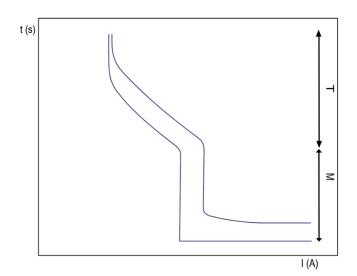


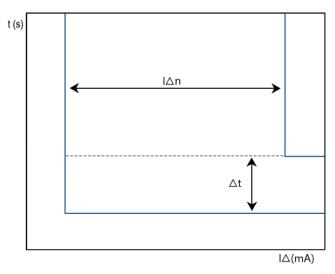

Trip Curve

The TemBreak *PRO* ZS_TF thermal magnetic trip unit protects against overcurrent and short circuit faults for many types of electrical distribution systems. The ZS_TF OCR has protective characteristics according to the requirements of the standard AS/NZS IEC 60947-2.

The ZS_TF residual current trip unit protects against earth leakage and earth faults in electrical systems, the protective characteristics of which are according to the requirements of AS/NZS IEC 60947-2 Annex B.

The ZS_TF OCR consists of a single large dial type (blue coloured dial) for thermal adjustment, and two smaller dials (grey coloured dials) for residual current threshold and time delay adjustment.

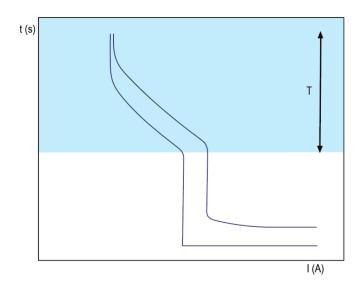




List of Protection Functions

Abbreviation	Description	Protection against	Symbol	Definition
Т	Thermal	Low level overload current	lr	Threshold thermal protection
F	Magnetic	High level short-circuit current	li	Fixed magnetic protection
R	Residual Current	Earth leakage and earth fault current	IΔn	Residual current protection

Time-current curve



Thermal protection

The thermal protection is designed to protect against current overloads or surges in power distribution or motor control applications. Thermal protection is an inverse-time protection, labelled as I_r.

TF - Adjusting Ir (Current)

The thermal protection trip range is: 0.63 – 1.0 x In according to standard AS / NZS / IEC 60947-2.

The I_r trip threshold is adjusted using the I_r dial on the front of the ZS_TF CBR: It is continuously adjustable between 0.63 x I_n to 1.0 x I_n , with reference labels of 0.63, 0.8 and 1.0 on the I_r dial.

	Thermal Protection Settings (Ir)							
Rating (I _n)	Dial Range (x I _n)	Adjustable Current Range (A)						
20 A	0.63 1.0	12.5 20						
32 A	0.63 1.0	20 32						
50 A	0.63 1.0	32 50						
63 A	0.80 1.0	50 63						
100 A	0.63 1.0	63100						
125 A	0.63 1.0	80 125						
160 A	0.63 1.0	100 160						
250 A	0.63 1.0	160 250						

Labelling of Calibrated Points

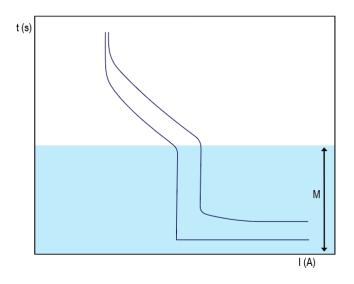
 $I_{\rm r}$ dial of the ZS_TF CBR has been calibrated for points 0.63, 0.8 & 1 x $I_{\rm n}.$

 I_r calibration points are marked as follows: Red: 1.0 x In Blue: 0.8 x In Black: 0.63 x In

0.63 L - 0.8

M

 $I_{\rm R}(\times I_{\rm n})$



WARNING: Setting Ir dial outside of the calibrated zone (0.63 - 1) may cause unpredictable behaviour of the CBR.

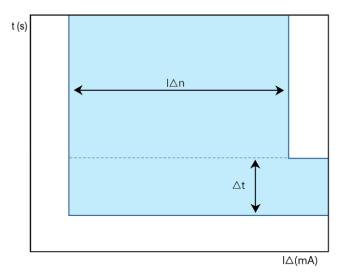
Magnetic Protection

The magnetic protection is designed to protect against fast high current faults such as short circuits, labelled as li.

TF – Fixed I_i (Current)

The magnetic protection of the TF type Trip Unit is at a fixed value based on a multiple of the nominal current rating of the CBR (I_n). The multiple of the rated current I_n , and the magnetic trip threshold currents for the respective ZS_TF CBR rated currents are as follows:

Magnetic Protection Settings				
Rated Current (In)	Multiple of In	Magnetic trip threshold (Ii)		
20 A	12 x I _n (+/- 20 %)	240 A		
32 A	12 x In (+/- 20 %)	384 A		
50 A	12 x In (+/- 20 %)	600 A		
63 A	12 x In (+/- 20 %)	756 A		
100 A	12 x I _n (+/- 20 %)	1200 A		
125 A	10 x In (+/- 20 %)	1250 A		
160 A	13 x I _n (+/- 20 %)	2080 A		
250 A	10 x I _n (+/- 20 %)	2500 A		



Residual Current Protection

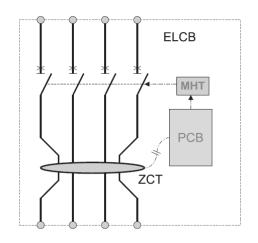
The residual current protection is designed to provide protection against abnormal current flow to the earth, either due to an insulation fault (Earth Fault) or in the absence of an insulation fault (Earth Leakage).

The ZS_TF CBR allows for adjustment of both the residual operating current and non-actuating time delay. Settings can be adjusted to provide specific residual current protection for electrical systems and equipment, or to allow for residual current selectivity in electrical systems where residual current protection devices are connected in series. Introducing a time delay in the upstream residual current protection device such as a ZS_TF CBR allows for the downstream residual current protection device nearest to the earth fault to operate first, improving the reliability of supply of the electrical system.

The residual current protection threshold is labelled as $I\Delta_n$ (A), and the non-actuating time delay is labelled as Δt (ms).

Residual Current Protection Type

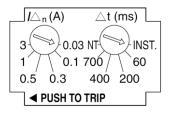
The ZS_TF CBR offers Type A residual current protection. Tripping is ensured for residual sinusoidal AC in the presence of residual pulsating DC.


Zero Phase Current Transformer (ZCT)

The ZS_TF CBR uses an internal Zero Phase Current Transformer (ZCT) for the detection of earth leakage and earth fault currents.

The single cores of the electrical system pass through the inner diameter of the ZCT within the CBR. While the system is fault free the outgoing and return current vectors are balanced, so no current will flow in the secondary output of the ZCT.

When an earth leakage or earth fault is present in the system, the residual current (zero phase sequence current) of the system flows through the secondary of the ZCT, and this secondary current is detected by the residual current detection circuit (PCB).


If the detected residual current exceeds the selected residual operating current setting ($I\Delta_n$), the non-actuating time delay (Δt) is initiated, after which the Magnetic Hold Trigger (MHT) will operate and cause the main poles of the CBR to open automatically.

4-pole ZS_TF CBR shown

The residual operating current and non-actuating time delay can be selected from multiple values using the adjustment dials on the ZS_TF CBR.

R – Adjusting IAn (Residual Operating Current)

The residual operating current setting can be set to values between 30 mA and 3.0 A according to standard AS / NZS / IEC 60947-2 Annex B.

The residual operating current setting is adjusted using the 'IΔn (A)' dial on the front of the ZS_TF CBR: It is not continuously adjustable and must be selected from the available discrete settings labelled on the ZS_TF CBR, as listed below.

$I\!\!\bigtriangleup_{r}$	(A)
3	20.03
1 /	0.1
0.5	0.3

Residual Operating Current Threshold IΔn (A)					
0.3 0.5 1.0 3.0	1.0	0.5	0.3	0.1	0.03

R – Adjusting Δt (Time Delay)

The limiting non-actuating time, or time delay, can be set to values between 60ms and 700ms, and can also be set to Instantaneous (INST - no additional delay) or No Trip (NT - "infinite" delay).

The time delay is adjusted using the '\Dather (ms)' dial on the front of the ZS_TF CBR: It is not continuously adjustable and must be selected from the available discrete settings labelled on the ZS_TF CBR, as listed below.

	Time delay Δt Setting Maximum break time (s)				
rianglet (ms)	(ms)	1x I∆n	2x I∆ _n	5x I∆ _n	10x I∆ _n
	INST (Instantaneous)	0.3	0.15	0.04	0.04
NT (INST.	60	0.19	0.16	0.15	0.15
700 60	200	0.36	0.35	0.34	0.34
/ \	400	0.62	0.61	0.60	0.60
400 200	700	0.95	0.94	0.93	0.93
	NT (No Trip)	n/a	n/a	n/a	n/a

The non-actuating time delay setting determines when the trip will be initiated, however the actual breaking time is not a definite value due to various mechanical and electrical factors which may affect the time to open the circuit. The maximum breaking time for each time delay setting at various residual fault current magnitudes is shown in the table above.

Notice: Setting the residual operating current $I\Delta_n$ adjustment dial to 30 mA will override the time delay setting Δt and will default to INST (no additional delay), regardless of the Δt time delay dial setting.

WARNING: The residual operating current threshold ($I\Delta_n$) and non-actuating time delay (Δt) can be set to levels which are not suitable for personnel protection against earth leakage or earth fault currents.

Temperature Ratings

The ZS_TF CBRs are fitted with a thermomagnetic trip unit which has its thermal element set for a specific calibration temperature.

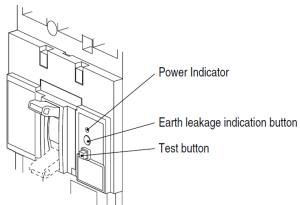
The ZS_TF CBRs have been calibrated for operation at 50°C for all frame sizes.

Notice: Due to the nature of thermal protection, it is not possible to set I_r to an exact value. Ambient temperatures and conductor temperatures will have an effect. The ZS_TF CBRs have been calibrated for operation at 50°C.

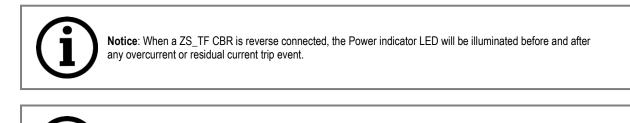
For ambient temperatures other than 50°C, with the maximum setting, the variation of thermal current threshold is given in the tables as follows:

Refer to Annex F - Temperature Calibration Tables for details on temperature deratings.

The ZS_TF CBR uses an integrated residual current unit which provides the residual current protection functionality. The residual current unit features a power indication LED, residual current Trip indicator, Test button, and Remote Trip functionality as standard.



Notice: The integrated residual current unit of the ZS_TF CBR is not a repairable or replaceable component. In the event of failure of the residual current unit, the ZS_TF CBR must be replaced in its entirety.

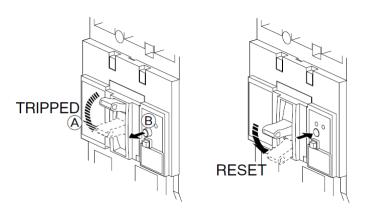

Residual Current Unit Indication and Function Button Locations

The Power indicator, residual current (Earth leakage) trip indicator and Test button are positioned on front of the residual current unit of the ZS_TF CBR as indicated below.

Residual Current Unit Power Indication

The "Power" indicator is a green LED which will illuminate when the residual current unit of the ZS_TF CBR is energized. The residual current unit is selfpowered via connection to the bottom of the 3 main power poles of the CBR. The Power indicator should illuminate when the CBR is turned ON and should not be illuminated when the CBR is in the TRIPPED or OFF position.

Notice: The brightness of the Power indication LED may vary during normal operation. The LED may appear brighter when CBR is initially turned ON, and when Test button is operated.



Residual Current Trip Indication

The yellow pushbutton labelled "E/L trip" indicates that the ZS_TF CBR has tripped due to operation of the residual current protection.

The E/L trip button remains in the depressed ("pushed in") position during normal operation and no residual current trip event has occurred. When a residual current trip event occurs, the CBR main power toggle will switch to the TRIPPED position and the E/L trip indicator will extend outwards ("popped out").

When the CBR main power toggle is reset to the OFF position after being tripped, the E/L trip button will automatically reset and retract to the depressed position.

Notice: After a residual current trip, the yellow E/L indicator will pop out and the black toggle of the breaker will move to the TRIPPED position. During an overload trip, only the black toggle on the breaker will move to the TRIPPED position.

Residual Current Unit Test Button

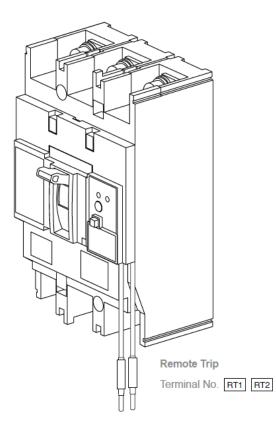
The ZS_TF CBR residual current unit features a grey square test button labelled "T" which is used to confirm the operation of the residual current protection facility.

The test button performs a complete residual current test of the full current path within the CBR by injecting a current of magnitude $I\Delta_n$ as set by the adjustment dial into the internal test coil of the CBR. This injected current is detected by the ZCT which will operate the residual current detection circuit and trip the CBR.

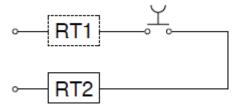
This test should be performed monthly at a minimum, with additional testing performed as stipulated by site specific requirements.

Notice: If pressing the residual current unit test button for 2 to 3 seconds does not cause the ZS_TF CBR to trip open, the CBR may be faulty and require replacement.

Notice: Do not perform OFF operation by pressing the Test button of the CBR. Putting the CBR into the TRIP position rather than OFF for the purpose of power isolation will reduce the lifespan of the breaker prematurely.



Remote Trip Operation


Remote Trip (RT) functionality is provided as a standard feature for ZS_TF model CBRs.

The residual current unit of the ZS_TF CBRs has two Remote Trip wires, labelled RT1 and RT2, which come out of the front right-hand side of the CBR through a small opening in the front cover. When the Remote Trip wires form a closed circuit, the trip function of the CBR's residual current unit will be activated.

The speed at which the ZS_TF CBR is tripped by Remote Trip is determined by the setting of the non-actuating time delay dial (Δt).

The Remote Trip wires can be closed via dry contact closure by using an external pushbutton, relay, or other similar closing mechanism. No external power source is required for Remote Trip operation.

Upon activation, the RT1 and RT2 leads will have a potential voltage of 45V DC and draw 5mA. Select a switching device that is adequately suitable for controlling Remote Test activation, considering the operating voltage and current of the RT circuit.

The Remote Test switch must not be shared with other equipment or used to control the RT feature of more than one ZS_TF CBR.

The RT leads are 1.0m in length as standard and can be extended up to 3.0m in length.

Remote Trip Operation

If Remote Trip functionality is not required, the "REMOTE TRIP" wires RT1 and RT2 can be stored or removed in such a manner that there is no continuity between the RT conductors.

When storing the Remote Trip wires for future use, the RT1 and RT2 conductors can either be coiled up safely or wired to terminal blocks that are not connected to any other equipment.

If the Remote Trip wires are to be removed, open the CBR front cover and cut the RT1 and RT2 wires at the point where they are extend from the residual current unit. Cutting the RT1 and RT2 wires should be performed when the ZS_TF CBR is turned off. Removal of the RT1 and RT2 wires will not have an adverse effect on the operation of the residual current unit.

WARNING: Do not touch the RT1 and RT2 wires while voltage is being applied to the ZS_TF CBR main circuit as you may receive an electric shock.

WARNING: When the ZS_TF CBR is reverse fed, voltage may be present on RT1 and RT2 wires while the CBR main power toggle is in OFF position and the residual current unit is not tripped.

Notice: Do not apply external voltage to the RT1 and RT2 wires as this may damage to the residual current unit of the CBR or cause incorrect operation.

Notice: The Remote Trip feature is not considered a residual current test of the ZS_TF CBR as it does not operate on the full residual current path of the CBR. Testing of residual current protection of the ZS_TF CBR should only be performed through operation of the integrated test button or via use of external residual current testing equipment.

Notice: If the ZS_TF CBR has been fitted with the optional Trip Control Unit (TCU), do not use the standard Remote Trip feature of the CBR as this will cause incorrect operation of the TCU. Refer to <u>Trip Control Unit</u> (<u>TCU</u>) for more information.

Commissioning

Thermal Setting (Ir)

WARNING: Risk of nuisance tripping. Only qualified personnel are to set the protection levels. Failure to respect these instructions may cause death, serious injuries or equipment damage.

WARNING: Setting I_r dial outside of the calibrated zone (0.63 - 1) may cause unpredictable behaviour of the MCCB.

	Action	Note / Illustration
1	Switch the MCCB to the OFF Position.	
2	Remove the transparent cover to access the I _r adjustment dial.	
3	Using a PH1, PH2 or PZ2 size screwdriver, rotate the I _r adjustment dial to the desired value of I _r . in Amperes. I _r calibration points are marked as follows: Red : 1.0 x I _n Blue : 0.8 x I _n Black : 0.63 x I _n	$ \begin{array}{c} 0.8 \\ 1 \\ l_{R}(\times l_{n}) \end{array} \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
4	Replace the transparent cover to prevent adjustments from being made by unauthorized personnel.	

Notice: The adjustments for I_r are continuous and not discrete.

Notice: Due to the nature of thermal protection, it is not possible to set I_r to an exact value. Ambient temperatures and conductor temperatures will have an effect. The ZS_TF CBRs have been calibrated for operation at 50°C.

Exclusive Partner

Commissioning

Residual Operating Current (I Δ_n) and Time Delay (Δt) Setting

WARNING: Risk of nuisance tripping.

Only qualified personnel are to set the protection levels. Failure to respect these instructions may cause death, serious injuries or equipment damage.

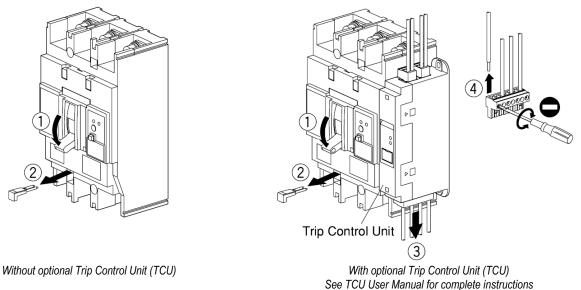
WARNING: The residual operating current threshold $(I\Delta_n)$ and non-actuating time delay (Δt) can be set to levels that are not suitable for personnel protection against earth leakage or earth fault currents.

Action	Note / Illustration
1 Switch the CBR main toggle to the OFF position.	
Remove the transparent cover to 2 access the $I\Delta_n$ (A) and Δt (ms) adjustment dials.	<i>I</i> ∆ _n (A) ∆t (ms) 3 0.03 NT INST. 1 0.1 700 60 0.5 0.3 400 200
Using a size SL3 slotted screwdriver, rotate the $I\Delta_n$ and Δt adjustment dials to the required settings.	■ PUSH TO TRIP
 Replace the transparent cover to prevent adjustments from being made by unauthorized personnel. 	

í

Notice: Setting the residual operating current $I\Delta_n$ adjustment dial to 30 mA will override the time delay setting Δt and set it to INST (no additional delay), regardless of the Δt time delay dial setting.

Notice: The settings for $I\Delta_n$ and Δt are not continuously adjustable and must be selected from the discrete labelled values.


Commissioning

Dielectric Test Disconnect Plug

The ZS_TF CBR features a built-in dielectric disconnection test plug. This plug must be removed prior to performing dielectric testing on the CBR. The dielectric test plug can be found on the front and towards the bottom of the ZS_TF CBR between the 1st and 2nd left most main connection terminals.

The ZS_TF CBR should be switched OFF (1) before removal of the dielectric test disconnect plug (2).

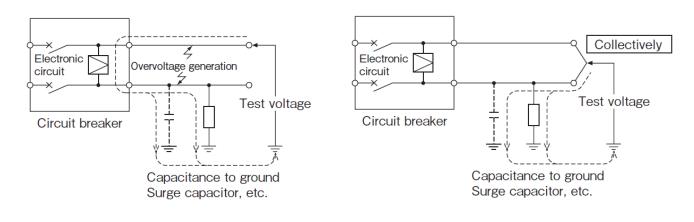
Notice: If the ZS_TF CBR is dielectric tested and the dielectric test plug has not been removed, some components of the residual current unit PCB may be damaged by over voltage. In the event of failure of the residual current unit, the CBR must be replaced in its entirety.

Notice: Avoid dielectric withstand voltage tests and insulation resistance tests between poles with different polarity as this may damage the ZS_TF CBR.

Notice: The dielectric test plug must be reinstated after dielectric testing has been performed. If the dielectric test plug is not installed during normal operation of the CBR, the residual current unit will not function.

Commissioning

Dielectric Testing Methodology


Please refer to the below table for permissible testing methods for performing dielectric testing on the ZS_TF CBRs. The dielectric test disconnect plug should be removed prior to performing any of the below tests, and reinstated once testing has been completed.

Measurement points	Test	Insulation Resistance M	leasurement (1)	Withstand Voltage Test ⁽²⁾⁽³⁾		
Toggle Condition		ON	OFF	ON	OFF	
Between main circuit live part an	d ground	\checkmark	\checkmark	✓ ⁽⁴⁾	✓ ⁽⁴⁾	
Between left – centre (R-S), centre – right (S-T) poles	Line Side	✓	✓	✓	✓	
centre – right (S-T) poles	Load Side	✓	✓	✓	✓	
Between left – right poles (R-T)	Line Side	×	✓	×	✓	
	Load Side	×	×	×	×	
Between power supply and load	terminals	-	✓	-	✓	
Between operation circuit live pa	rt and ground	√	\checkmark	\checkmark	✓	

\checkmark	Test safe to perform					
×	Do not perform test					
Ι	Test not applicable					

Notes:

- Testing should be performed with a 500V dc insulation resistance tester. Higher test voltages may damage the CBR. Do not perform insulation resistance test between the left (R / L1 phase) and right (T / L3 phase) poles of the ZS_TF CBR on the line-side while the CBR is ON, or on the load-side in either ON or OFF positions, as this may damage the CBR.
- 2) The CBR may be damaged and require replacement if test voltage is applied to the CBR in conditions marked X in the table.
- 3) Withstand Voltage test voltage shall not exceed 2500V ac rms.
- 4) When performing a withstand voltage test between each pole of the main circuit live part and ground with the load wiring connected to the circuit breaker, perform the test between the main circuit live parts collectively and ground. There is a risk of failure if excessive voltage is applied between the poles via the capacitance to ground, or between the wiring and the impedance connected to ground (surge capacitor, arrester, noise filter, etc).Please see below diagrams.

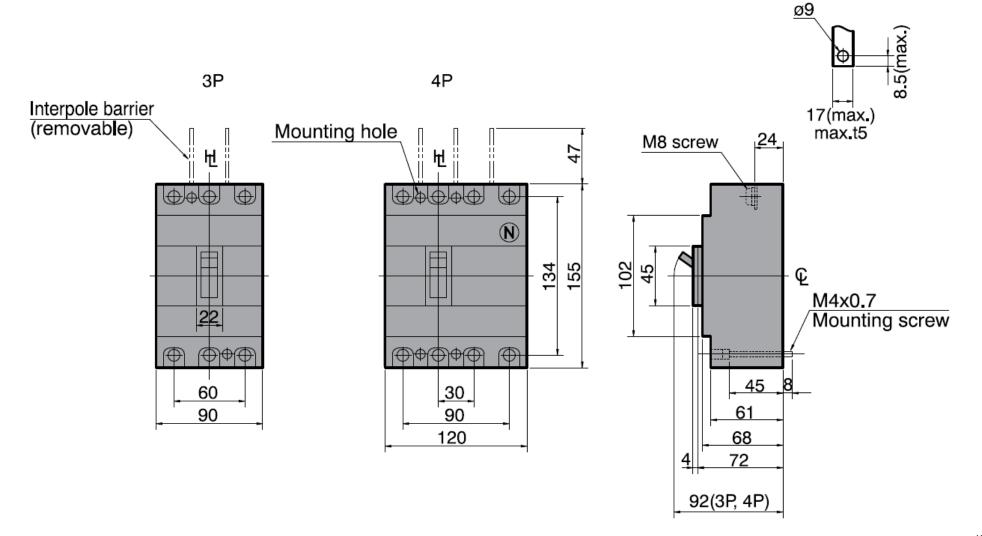
Troubleshooting

In the event of a problem when using the TemBreak PRO system, this section provides advice on how to resolve issues.

	Problem description	Possible cause	Remedial advice
1	Abnormal voltage on load side	Excessive wear of contacts	Replace MCCB
		Foreign matter interfering with contacts or contact surfaces	
2	Failure in ON position	Reset operation not conducted after tripping operation	Perform reset operation.
3	Failure in RESET position	Circuit breaker service life ended due to large number of switching cycles using Remote Trip	Replace MCCB
		Fault of tripping mechanism	Replace MCCB Dampen vibration of MCCB and review installation requirements
		Vibration and/or shock	
4	Nuisance tripping while rated current not reached	High proportion of high frequency distortion in load current.	Decrease distortion content of load circuit
		Electromagnetic induced interference (from nearby conductors or external radio sources)	Review nearby sources of conducted and radiated emissions (e.g. radio sources, high-speed switching devices including variable frequency drives)
		Excessive surge	Isolate and mitigate surge source (e.g. surge protection devices)
		Incorrect connection of control circuit for Remote Trip	Verify control wiring of RT1 and RT2 wires wiring
		Excessive inrush starting current due to load type	Review INST and STD protection settings for load type where applicable
5	Nuisance tripping due to starting current	Switching operation of star-delta motor starter, incorrect wiring	Verify and correct any issues with star-delta starter wiring with respect to the motor windings and phase sequence. Refer to motor and/or starter manufacturer
		Short-circuit in motor (e.g. windings, starter circuit)	Verify and correct any issues with motor wiring. Inspect and verify motor winding insulation. Refer to motor manufacturer
		Failure in selectivity/coordination with upstream circuit breaker or fuse	Review selectivity/coordination study and protection parameters of each device
		Incorrect protection settings	Review enabled protection settings ensuring correct pickup current and time-delay for load type. (e.g. LTD, STD, INST pickup currents and time delays)
6	Nuisance tripping due to residual current	Earth leakage in motor (e.g. windings, starter circuit)	Verify and correct any issues with motor wiring. Inspect and verify motor winding insulation. Refer to motor manufacturer
		Failure in residual current selectivity/coordination with upstream circuit breaker	Review residual current selectivity/coordination study and protection parameters of each device
		Incorrect protection settings	Review enabled protection settings ensuring correct I Δ n residual current threshold and Δ t non-actuating time delay are suitable for load type
7	No trip at pickup current	Failure in selectivity/coordination with upstream circuit breaker or fuse	Review selectivity/coordination study and protection parameters of each device
		Incorrect protection settings	Review enabled protection settings ensuring correct pickup current and time-delay for load type. (e.g. LTD, STD, INST pickup currents, and time delays)

Troubleshooting

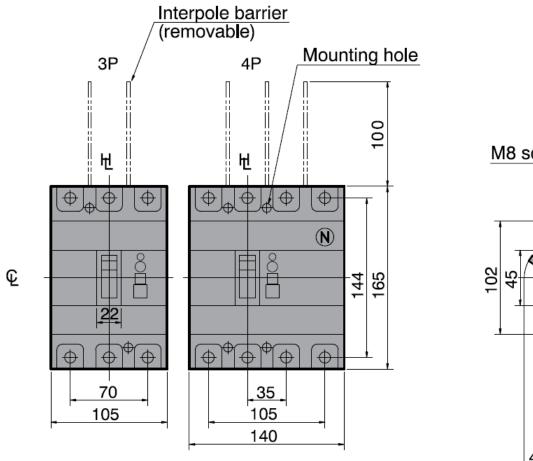
	Problem description	Possible cause	Remedial advice
8	Residual current unit Power indication LED not illuminated	Incorrect power source connection	Confirm ZS CBR is connected to power source correctly See <u>Annex G – Connection Diagrams</u>
		Insufficient supply voltage	Residual current unit requires at least 200V AC to function correctly
		Dielectric test plug not present	Ensure dielectric test plug has been reinstated after completing dielectric testing
		Residual current unit has failed	Replace the ZS CBR. The residual current unit is not a repairable or replaceable component
9	Residual current unit Test button does not trip the CBR	Residual current unit not energized	See Troubleshooting item 8 "Residual current unit Power indication LED not illuminated"
		Residual current unit has failed	Replace the ZS CBR. The residual current unit is not a repairable or replaceable component
10	Residual current injection test does not trip the CBR	Incorrect protection settings	Review enabled protection settings ensuring correct $I\Delta n$ residual current threshold and Δt time-delay settings for load type
		Incorrect testing procedure	Ensure testing equipment is capable of injecting residual current of at least 1x I Δ n for a duration that is greater than Δ t
		Residual current unit not energized	See Troubleshooting item 8 "Residual current unit Power indication LED not illuminated"
		Dielectric test plug not present	Ensure dielectric test plug has been reinstated after completing dielectric testing
		Residual current unit has failed	Replace the ZS CBR. The residual current unit is not a repairable or replaceable component
11	Remote Trip does not trip the CBR	Incorrect protection settings	Remote Trip will not function if residual current time delay (Δt) is set to No Trip (NT)
		Erroneous connection of control circuit for RT	Verify control wiring of RT1 and RT2 wires
		Residual current unit has failed	Replace the ZS CBR. The residual current unit is not a repairable or replaceable component

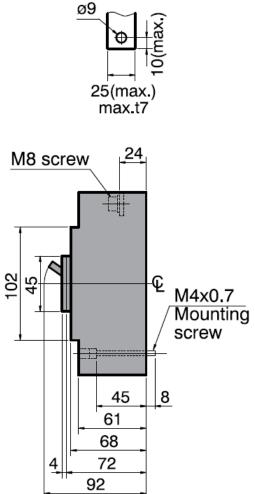


Annex A – Dimensions

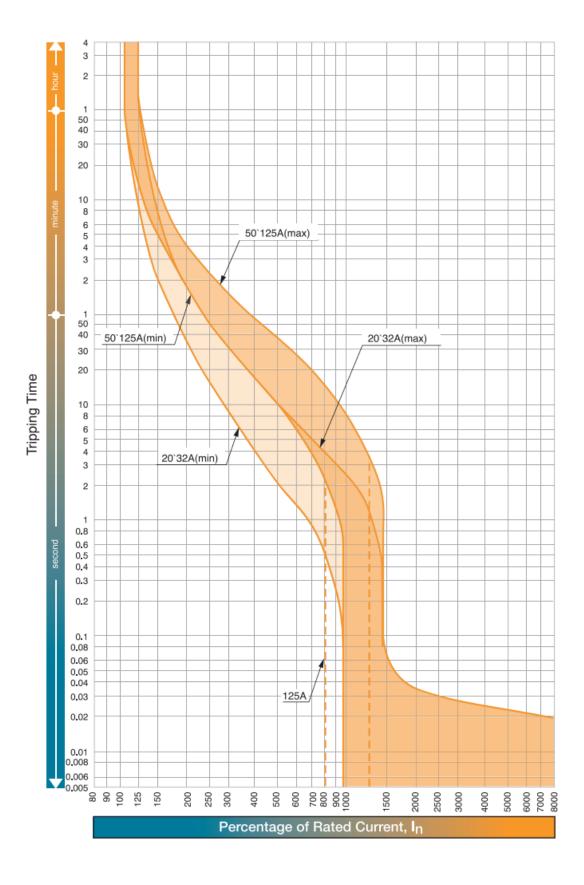
ZS125 Dimensions

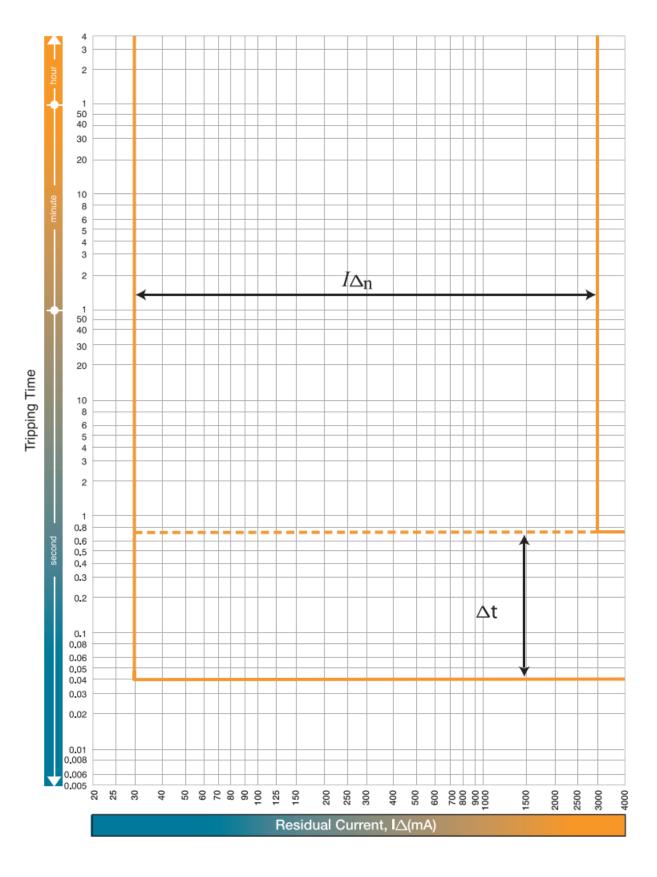
Preparation of conductor

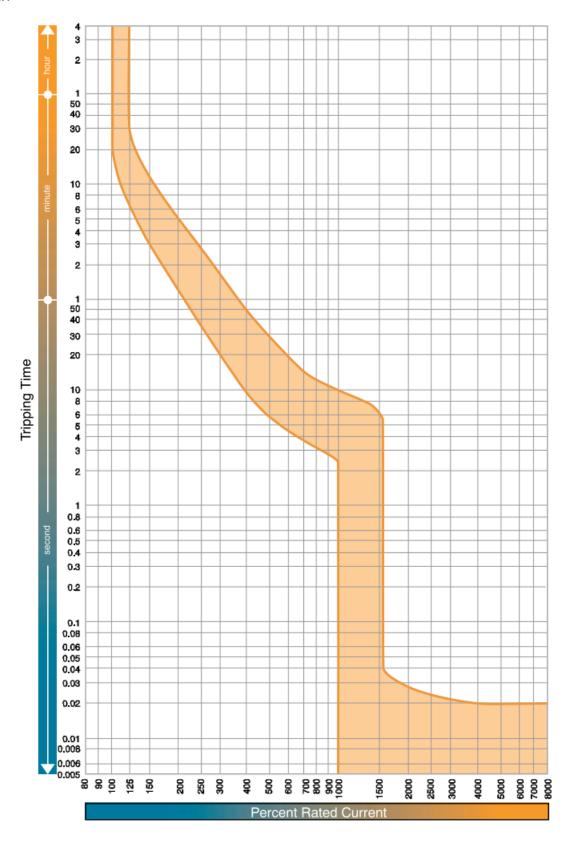



Annex A – Dimensions

ZS250 Dimensions

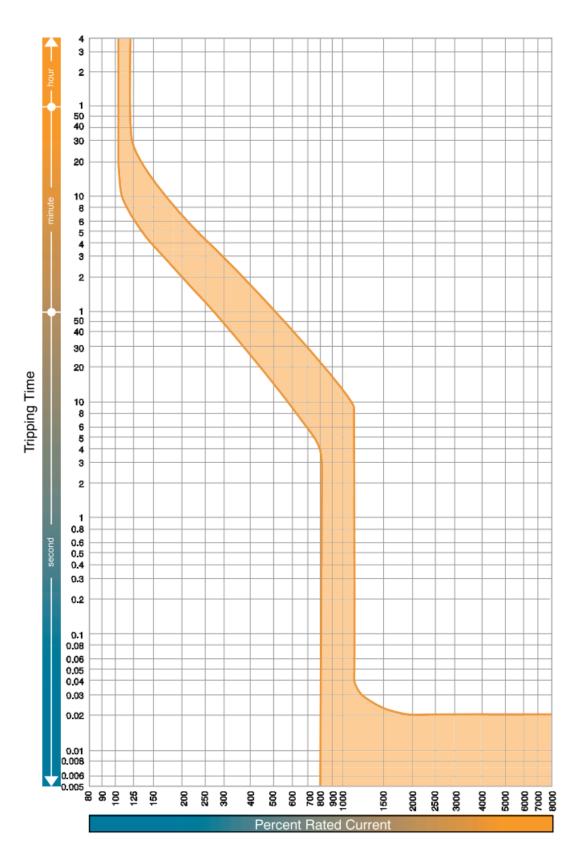

Preparation of conductor


ZS125M

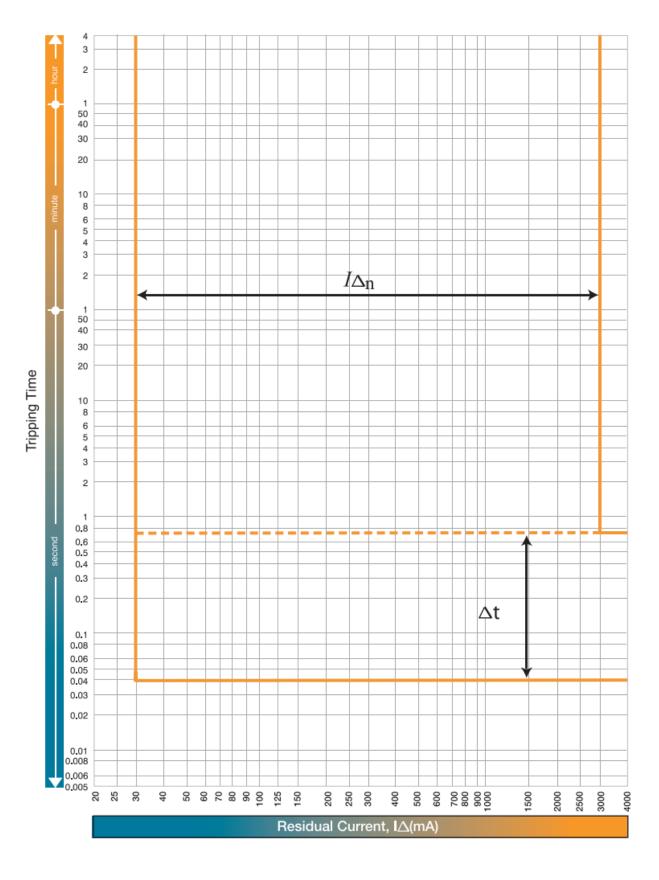


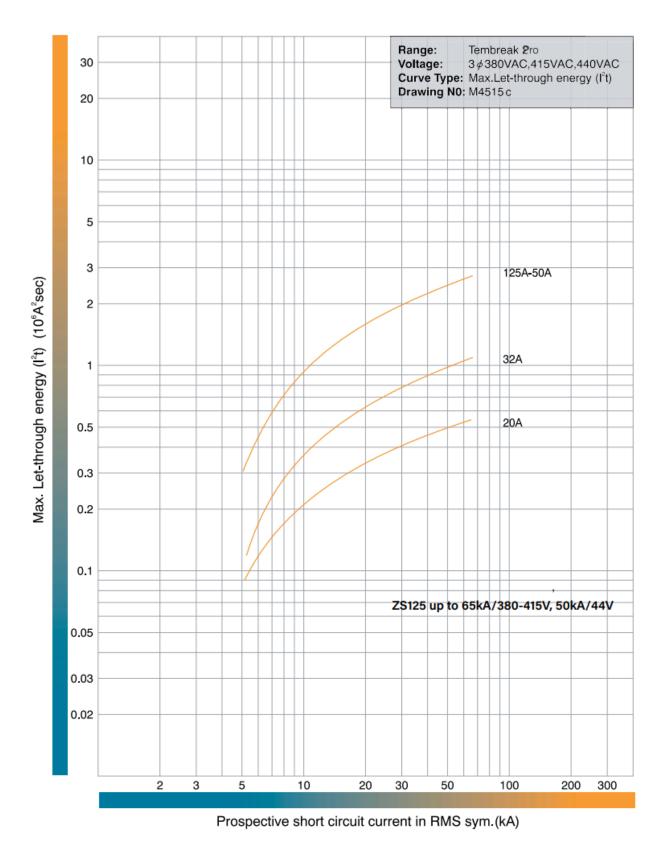
ZS125M Residual Current Characteristic

ZS250M 160A

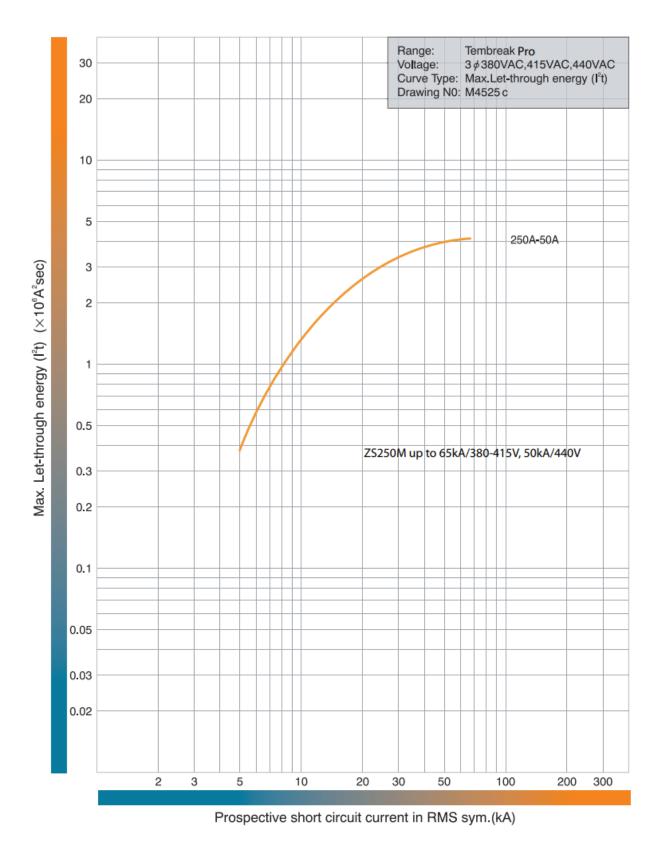


ZS250M 250A



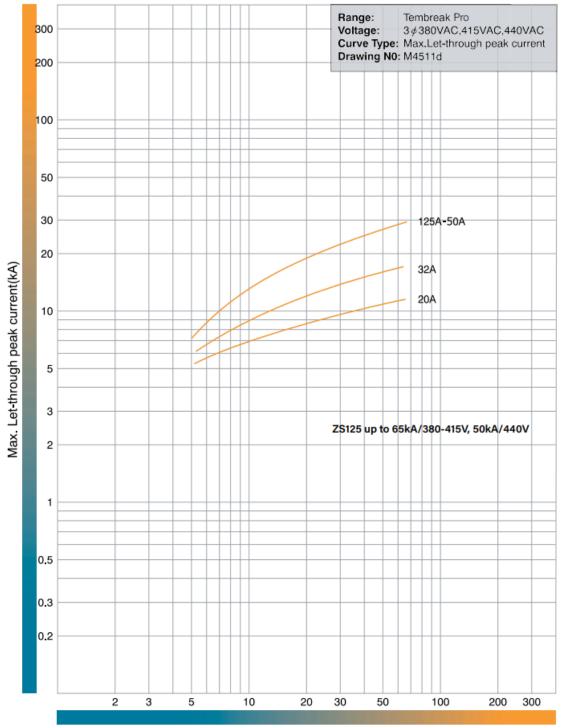

ZS250M Residual Current Characteristic

Annex C – $I^{2}t$ Let Through Curves


ZS125M

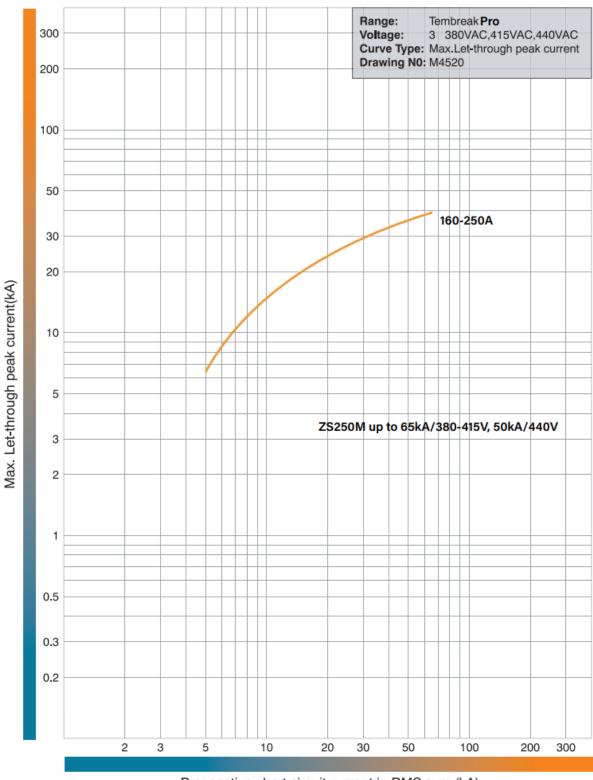
Annex C – I²t Let Through Curves

ZS250M



Annex D – Peak Let Through Curves

ZS125M


Prospective short circuit current in RMS sym.(kA)

Exclusive Partner

Annex D – Peak Let Through Curves

ZS250M

Prospective short circuit current in RMS sym.(kA)

Annex E – Watts Loss

Resistance Watts Loss

Frame	Rating In (A)	Resistance per pole (mΩ)	Watts Loss per pole Based on Resistance (W)	Pole numbers	Watts Loss per product Based on Resistance (W)
	20	15	6		18.0
	32	8	7.2		21.6
ZS125_TF	50	1.8	4.5	3/4P	13.5
23125_11	63	1.3	4.68	J/4F	14.0
	100	0.8	8		24.0
	125	0.73	11.4		34.2
ZS250_TF	160	0.47	12.03	3/4P	36.1
23200_1F	F 250 0.26	16.3	3/4F	48.9	

Annex F – Temperature Derating

Front & Rear Connect

Calibratio	Calibration Temperature: 50°C														
MCCB	Connection	Rated I₀		Rated Current (A)											
Туре	type	Raleu In	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C	50°C	55°C	60°C	65°C	70°C
		20A	23.7	23.2	22.8	22.4	21.9	21.4	21.0	20.5	20.0	19.5	19.0	18.4	17.9
	Front Conn.	32A	35.5	35.1	34.6	34.2	33.8	33.3	32.9	32.5	32.0	31.5	31.1	30.6	30.1
ZS125		50A	62.2	60.8	59.4	57.9	56.4	54.9	53.3	51.7	50.0	48.3	46.5	44.6	42.6
23125		63A	75.8	74.3	72.8	71.3	69.7	68.1	66.4	64.7	63.0	61.2	59.4	57.5	55.5
	Rear Conn.	100A	118	116	114	112	109	107	105	102	100	97	95	92	90
		125A	148	145	142	140	137	134	131	128	125	122	119	115	112
ZS250		160A	187	184	181	177	174	171	167	164	160	156	152	149	145
23230		250A	285	281	277	272	268	264	259	255	250	245	240	235	230


Annex G – Connection Diagrams

Connection Type	ZS CBR No. Poles	Diagram	Correct/Incorrect	Notes
Reverse Connection	3-pole and 4-pole		~	Reverse (bottom) connection is permissible for both 3- and 4-pole ZS_TF CBRs. When a ZS_TF CBR is reverse connected, the Power LED located on the residual current unit on the front of the CBR will be illuminated before and after any over current or residual current trip.
Chassis Connection (3P)	3-pole		~	Reverse (bottom) connection is required for all ZS_TF CBRs when connected to a chassis. When a ZS_TF CBR is reverse connected, the Power LED located on the residual current unit on the front of the CBR will be illuminated before and after any over current or residual current trip.
Chassis Connection (3P+N) <u>L1</u> <u>H2</u> <u>H3</u> <u>K1</u> <u>N</u> <u>K1</u>	4-pole		~	Reverse (bottom) connection is required for all ZS_TF CBR when connected to a chassis. For 4-pole systems the chassis Neutral poles must connect to CBR Neutral terminals. Switched or Solid Neutral models can be used. When a ZS_TF CBR is reverse connected, the Power LED located on the residual current unit on the front of the CBR will be illuminated before and after any over current or residual current trip.
3-phase 3-wire (3P)	3-pole		~	
	4-pole		~	A 4-pole ZS_TF CBR can be used on a 3P system if the system phases use the 3 main poles of the CBR and the 4th Neutral pole of the CBR is not used.

Annex G - Connection Diagrams

Annex G – Connection Diagrams

Connection Type	ZS CBR No. Poles	Diagram	Correct/Incorrect	Notes
	3-pole		~	
2-phase 2-wire (2P)	4 mala		~	
	4-pole		×	When using a 4-pole ZS_TF CBR on a 2P system both P wires must use any of the 3 main power poles and not the 4 th Neutral pole.
			~	
2-phase 3-wire (2P+N)	3-pole		×	If a Neutral is present in the system, it must be monitored by the ZS_TF CBR so an imbalance will not occur. The CBR will trip if the Neutral is not connected.
<u>L1</u> <u>L2</u> <u>N</u>	4 2010		~	Switched or Solid Neutral models can be used.
	4-pole		×	If a Neutral is present in the system, it must be monitored by the ZS_TF CBR so an imbalance will not occur. The CBR will trip if the Neutral is not connected.

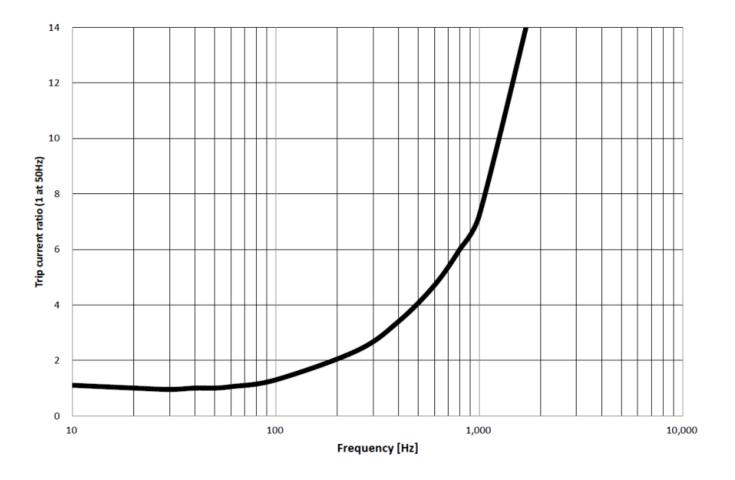
Annex H – Wiring Diagrams & Terminal Designations

Internal Accessories

Accessory Type	Contact Type	Switching Arrangement	Connection Type	Wiring Diagram	Terminal Designation
	General		Terminal	.1 .2 .2 .4	1 – Common 2 – N/C 3 – N/O
Auxiliary	Purpose	1 C/O	Pre-wired	11/AXC1 12/AXB1 14/AXa1	11/AXC1 – Common 12/AXB1 – N/C 14/AXa1 – N/O
,	Heavy Duty	1 N/O	Terminal	.3 .4 OFF, Trip	3 – Common 4 – N/O
	neavy Duty	1 N/C	Terminal	.1 .2	1 – Common 2 – N/C
			Terminal	.1 .2 .4 Trip	1 – Common 2 – N/C 4 – N/O
Alarm			Pre-wired	11/ALC1 12/ALB1 14/ALa1	11/ALC1 – Common 12/ALB1 – N/C 14/Ala1 – N/O
Ашш		1 N/O	Terminal	.3 	3 – Common 4 – N/O
	Heavy Duty	1 N/C	Terminal	.1 .2	1 – Common 2 – N/C

Annex I – Internal Harmonics Protection

ZS_TF CBRs include a harmonics inhibition circuit which limits the CBRs reaction of earth leakage trip unit to high frequency harmonics. This feature makes the ZS_TF CBR suitable for use with AC Drives and other similar equipment known to generate line harmonics.


Variable Speed Drives and other similar semiconductor switching products can produce high levels of harmonics that can travel through electrical power systems and can cause other devices to react in different ways to these harmonics. If the harmonics are enough to significantly distort the voltage waveform for example, these harmonics when added together can cause unintended tripping of a circuit breaker or residual current device.

In the case of a ZS_TF CBR, the levels of harmonics can be different for each phase, resulting in different amplitudes, voltages and currents for each phase. This can be enough to cause the CBR to sense a phase imbalance, which causes the device to trip.

If the harmonics cannot be filtered out of the system, then an option is to use a residual current sensing device that is increasingly immune to high frequency harmonics, so it can in effect ride on the resulting waveform. The "immunity" is the relay requiring more current to trip as the frequency increases, therefore decreasing the likelihood of the relay or CBR nuisance tripping. What is not wanted is a residual current device that, despite an increase in frequency, still only requires a low level of current (or the original 50Hz current) to trip it.

An ideal residual current device will operate in the region of 30-60Hz while seeing no harmonics. If harmonics start to appear, then at around 100Hz, the residual current relay will start to require higher currents to cause a trip.

The ZS_TF CBRs begin to react to high frequency at around 100Hz, as shown response curve below.

ZS Model MCCB with Integrated Residual Current Protection User Manual

Version 1.0.1 Published 18th December 2024

AU 1300 NHP NHP NZ 0800 NHP NHP Mhpnz.co.nz

NHP Electrical Engineering Products